MOVES Project Level Sensitivity Analysis Update

Transportation Research Board 93rd Annual Meeting Transportation and Air Quality Committee, ADC20

Presented By:
George Noel – Volpe
Mark Glaze - FHWA
1/13/2014

History of MOVES Sensitivity Analysis

- MOVES Project Level Analysis Began in November
 2012
 - Is a complement analysis to the Regional Level
 Sensitivity Analysis Report released in December 2012

- Focused on three variables associated with the Project Level Domain
 - Age Distribution
 - Fleet Mixture (Link Source Type)
 - MOVES Drive Schedules

Age Distribution Analysis

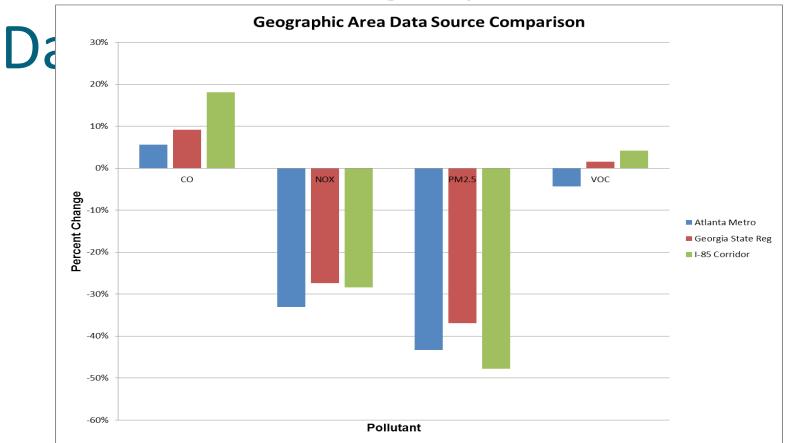
- The Project Level applied more meaningful variations
 - Reached out to the Transportation Planning Board (TPB) of the Metropolitan Washington Council of Governments (MWCOG)
 - Provided Age Distribution data for each MOVES source type
 - For each source type analyzed, divided the Age Distribution into age groups based upon the trends observed from the TPB of MWCOG data.

Analyzed the effects of vehicle aging on Passenger Cars, Transit Buses,
 Single Unit Trucks and Combination Trucks

Age Distribution Passenger Car

Passenger Car						
Vehicle Age Range	Baseline Age Fraction	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
0-3 years	0.32	-5%	-10%	-20%	-30%	-45%
4-7 years	0.22	-2%	-5%	-7.50%	-10%	-20%
8-12 years	0.26	5%	10%	20%	30%	50%
13-17 years	0.14	4%	8%	15%	20%	30%
18-30 years	0.06	2.50%	5%	7.50%	10%	25%
Average Vehicle Age	7.48	7.68	7.86	8.21	8.53	9.24

Source Type	Pollutant	Case	Average Age	Emission Rate (gram/vehicle- mile)	Percent Change
Passenger Car	NOX	Baseline	7.48	0.2929	-
		Scenario 1	7.68	0.3017	2.91%
		Scenario 2	7.86	0.3104	5.63%
		Scenario 3	8.21	0.3246	9.76%
		Scenario 4	8.53	0.3367	12.99%
		Scenario 5	9.24	0.37	20.84%


Fleet Mix (Link Source Type)

- Conduct Fleet Mix Sensitivity Analysis for multiple cases
 - Geographic Area Data Source
 - Passenger Car to Passenger Truck Ratio
 - Heavy Duty Truck Mix
 - Heavy Duty Truck Type Mix
 - Transit Bus Mix

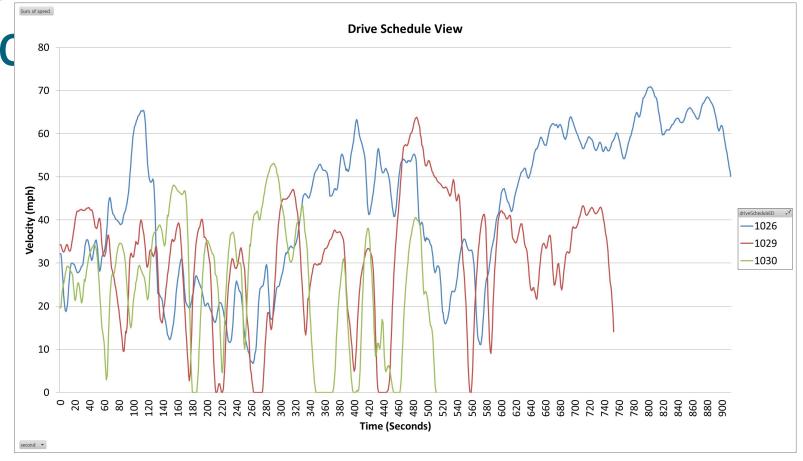
Utilized Fleet Mix data provided by Georgia Tech

 Compared composite emissions rates to the 'Baseline Case' specific to the scenario/cases that were analyzed

Fleet Mix Geographic Area

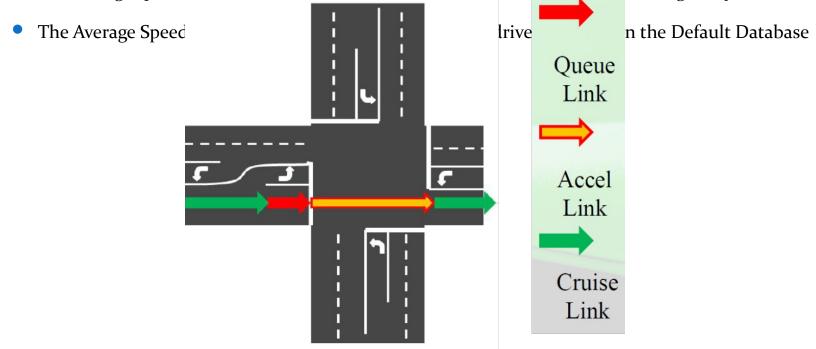
Average Speed compared to

The Project Level Sensitivity Analysis compared using Davelage Speed Colding Mich to Perating


Highway Capacity Manual (HCM) derived Drive Schedule/Operating Mode Dstributions

- Trip based Empirical Data provided by Georgia Tech
- Link Types analyzed
 - Cruise Conditions
 - Arterial
 - Freeway

Example: MOVES Default Drive


drive Sche dule ID	AverageSpeed (mph)	drive Sche dule Nam e
1026	43.2662	Final FC12LOSE Cycle (C15R10-00782)
1029	31.0232	Final FC14LOSB Cycle (C15R07-00177)
1030	25.379	Final FC14LOSC Cycle (C10R04-00104)

Average Speed

- The user will specify an average speed for a link
 - The average speed and distance assigned to the link determines the Source Operating Hours spent of the link.

The average speed should represent the conditions of the roadway segment being analyzed

Average Speed compared to constant approach speed Drive Schedule

Road Type	Link Type		CO Emissions Rates (gram/veh- mile)	Percent Change Compared to Average Speed	PM2.5 Emissions Rates (gram/veh- mile)	Percent Change Compared to Average Speed
Urban Unrestricted Access	Approach	25 mph Average Speed	3.6880	-27.12%	0.0504	-36.64%
		Constant 25 mph Drive Schedule	2.6876	-27.1270	0.0320	
Urban Unrestricted Access	Approach	35 mph Average Speed	3.1387	-24.33%	0.0374	-38.41%
		Constant 35 mph Drive Schedule	2.3752	-24.33 //	0.0230	
Urban Unrestricted Access	Approach	45 mph Average Speed	2.7569	10.770/	0.0314	-35.52%
		Constant 45 mph Drive Schedule	2.2118	-19.77%	0.0203	

Project Level Sensitivity

Variations in Age Distribution can have a significant effect on emissions rates UMMACV

- An older average age does not always equate to higher emissions rates (Transit Bus Scenario)
- For passenger cars when the average age increases by a year then the emissions rates increase was in the 10% percent range for CO, VOC, and NOX. The emissions rate increase in PM2.5 was approximately 5%.

- Getting the fleet mix accurate for your project is important
 - The ratio between passenger cars and passenger trucks is important primarily for CO
 - Getting the ratios between single unit and combination trucks are

Sensitivity Questions – Drive

- Swhapischedifference in emissions rates between using average speed versus user provided link drive schedule/operating mode distribution?
 - The default drive schedules utilized when using average speed might not represent the exact profile you want to model
 - Link might only have deceleration and idle
 - Link might only have cruise with no deceleration or acceleration

- How detailed do you have to be?
 - Individual drive schedules for each vehicle on the link?
 - Does it matter if you are more detailed?

